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lwA: Math. Gen., Vol. 9, NO. 3. 1976. Printed in Great Britain. @ 1976 

on Hauser’s type N gravitational field with twist 
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t Mathematical Institute, dxford University, 24-29 St Giles, Oxford, England 

Max Planck Institute for Astrophysics, 8 Munich 40, Foehringer Ring 6, Germany 

Received 23 June 1975, in 6nal form 11 August 1975 

Abstract. A sense in which flat space the  can be recovered as a limit of the newly dis- 
covered Hauser spacetimes is discussed. Thus a fairly complete adalysis of the symmetries 
of these space-times, together with the geometry of their linearized principal congruences 
and Weyl curvature tensors can be made. Unfortunately the Hauser spacetimes are not 
asymptotically flat and cannot therefore be regard& as describing gravitational radiation 
from an isolated system. 

barecent letter, Hauser (1974) has presented the metric tensor of a two parameter 
Iamily of exact solutions of Einstein’s vacuum gravitational field equation. The Weyl 
tensor is algebraically special of type (4) (or N), so the gravitational field is of the type 
&ted with pure radiation, and the associated congruence of null geodesics has 
non-vanishing twist. Hauser’s solutions are the first explicitly presented solutions 
with these properties. 

In this note we investigate a limiting form of Hauser’s metric containing one free 
meter, looking at its symmetries, the linearized principal congruence and linear- 
ired Weyl tensor. It turns out, unfortunately, that the linearized congruence is not 
&g, and both the congruence and the linearized Weyl tensor are singular on 
catah hypersurfaces in Minkowski’s spacetime. For one value of the remaining 
Weter, however, the linearized congruence is the degenerate case of a special type 
Olnull congruence which plays a central role in the theory of twistors (Penrose 1967) 
ad is associated with some globally non-singular solutions of the linearized field 
~ u a ~ o n ~ e m o s e  1965, Synge 1956). These latter matters are taken up in the appendix. 

the properties of the linearized fields, we are able to deduce that those Hauser 
-times which are not far removed from flat space admit precisely one Killing vector 
‘ld,and fail to be asymptotically flat. 

‘ Ekmentary properties of Hauser’s spacethe 

In Order to Conform with wider usage (Newman and Penrose 1962), we have altered 
notation, reversed the signature of the metric, and changed the sense Of one 

”mor SO that both of the real null tetrad vectors point to the future. The Cor- 
rspondace with Hauser (1974) is given in table 1. 

carried out while holding a NATO Postdoctoral Fellowship. 
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Table 1. 

with the alterations given in table 1, the metric is given in terms of the null tarad 
{P, na, ma, 3) by gab = 2l($b)-h(a@,)* With respect to a coordinate system 
X" = (5, r, [, e>, the tetrad has components 

1 ~ dx " = R d5 + 2iRX(d5 - dc) 

(1) n,&" = dr-3iR(AdC-Ad[) 

m , d x a  = AI,dx"+(r-iR)dc 

where 5 = : X+iY. The functions R and A are expressed in terms of a functionfd 
argument 5/(2X2) by 

R = 23/4X3/2f 

A = X-'[(5/(2XZ)-i)f'/f-~], 

where the function f is any solution of the second order, linear, ordinary difIermM 
equation 

16{1 +[~/(2X2)]z}f"+3f = 0. (31 
The reason that Hauser's parameter A does not appear is that it can be set equal to 
unity by a rescaling of the coordinates together with a boost of the tetrad Solutions 
with 'different A' are therefore issmetric, not just homothetic. 

The two parameters labelling the different Hauser solutions are the two parameters 
in the general solution f of equation (3). It proves convenient to take as basis in the 
space of solutions of equation (3) the functions Fl/4 and F3/4, where, for large valuesof 
the argument 5/(2X2), F1/4 behaves as [5/(2X2)]1/4 and F3/4 as [5/(2Xz)]3/4. In order 10 
facilitate the linearization to be carried out in the next section, we parametrize& 
solutions with 

(41 

AS was pointed out by Hauser (1974), the metric components in the (r,rtxjfl 
coordinates do not depend on Y. It follows that the vector field ala Y in these  COO^^^ 
satisfies Killing's equations, ie the associated local one parameter group of local y? 
morphisms consists of isometries. We shall show later that a/aY is the OdY Kd& 
vector field admitted by Hauser's space-times for general values of 

The vector field I" is tangent to a congruence of non-shear& affinely PHmetnzed 
null geodesics with complex expansion (Newman and Penrose 1962) p = -k8)-" 
the divergence of this congruence is +Vala = r/(r2 + Rz)  and its twist is 

The scalar r is the affine parameter and the scalars <, c, < are constant along the ?" 
gruence, ie each choice of values for 5, 5, [ selects a geodesic of the tbe affine parameter r. The vectorfields na, ma and 3 are propagated parak1lY 

p) E R2 by writing 

f = pAi/4F1/4 + (1 - p)j.3/4~3/4. 

!-4 . 

%"'v[&,] = R/(r2 + R2). 
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n e  only non-vanishing component of the Weyl curvature tensor in the 
coo$.' IP, 8, ma, 3) is 

y4 = C,,&"EbnCFjjd = 3ip[R(t + 2iX2)2] - '. (5) 

tity Y4 depends on the choice of null tetrad and is not an invariant scalar llRsm @*time; all algebraic scalar invariants of type (4) vacuum curvature ten- 
sors+ identically (cf Penrose 1960). On the other hand, the non-vanishing of 
ca, k invariant under tetrad transformations preserving the direction of I". This fact 
d b  of importance in our discussion of asymptotic flatness. 
a regular part of a Hauser space-time includes all points for which Y4 is finite 

tetrad is defined. Along incomplete and inextendable geodesics, if these occur, 
a y4 must become unbounded or the tetrad must cease to be dehed, or both. 

the expressions (1) and (5)  for the tetrad and Y4, we see that this behaviour 
mdrequire that R -+ 0, or else both g -+ 0 and X -, 0. The latter case also implies 
R+O, as may be seen by examining the expression (2) for R, and the asymptotic be- 
Bapiour (4) off. Inspecting the r dependence of Y4, one notices the curious feature 
@,at Y4 is regular everywhere along a geodesic in -the principal null congruence if it is 
6nite for some point of the geodesic. It is therefore of no help to us in analysing 
smgulanties that Y4 is a component of the curvature tensor in a tetrad parallelly 
propagated in the direction of I". It seems likely, nevertheless, that geodesics along 
rrhich R + 0 will be incomplete and inextendable. We shall see later that in the linear- 
dtheory, the field is genuinely singular. 

3. kaizaiion of Hauser's metric 

We now wish to consider certain limits of this two parameter family of space-times. 
If we could find the flat Minkowski space-time as a limit of some one parameter sub- 
my, then we could linearize this subfamily about flat space and learn something 
about the curved space-times by studying the corresponding linearized field. In fact, 
Whted out by Hauser (1974) himself, flat space does occur as a limit of the Hauser 
MY. Because the flat space is recovered in a nontrivial manner from equations (l), 
ut Shall discuss the limiting procedure in some detail, following the formulation of 
k0ch (1969). 

Regarding ,U as an arbitrary fixed parameter, we consider the family of Hauser 
*times corresponding to different values of 1 in equation (4). We then have a 
ore Parameter family of space-times ( M A ,  gn) for each p, and we wish to investigate 

as 1 + 0 from above. There is, however, no natural correspondence between 
?manifolds MA for different values of 1. Indeed, as Geroch (1969) has emphasized, 
quivalent limits can result from different choices for this correspondence. Hence 
Onemot S p e a k  of the limit as A-+ 0 of (MA, gn) a priori; one must first make a con- 
?'On % to how points in the different M, are to be identified. Once such a conven- 
h h b m a d e ,  there will exist a diffeomorphism relating M ,  to MI, say, for each A. 
we 9 then be able to consider the one parameter family of metrics g, on the single 

h t  convention should we adopt for identifying points in the different manifolds 
% Ofthe Subfamilies of Hauser spacetimes we are considering? Making use of the 

at hand, one might identify points in the different manifolds if they are 

MI and take the limit as 1 --f 0. 
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labelled by the same values for t, r, X, Y. With this convention the metic 
degenerate as 1 -+ 0, so one does not get a regular limit at all! 

We choose instead the following identification of points in the different M,: the 
x, point (5, r, X, r) in M, is to be identified for each 1 with the point (11/55, l*lsr, ~ - 2 1 ~  

E.-2/5r) in Mi.  The metrics g, on M I  are obtained from the metric (1) for value 
of E. in equation (4) by applying the diffeomorphism given explicitly by 5 +lipi, 
r -+ 12/5r, X + 1-2/5X, Y -+ 1-2/5Y. With this convention the limiting metric is n~ 
degenerate, due to the fact that the diffeomorphism is compensatingly singular in the 
limit. In order that the components of the tetrad vectors (1) should also be regular in 
the limit, we perform a 1-dependent boost on the tetrad : 

{la, na, ma, jjia} -+ ;12/5na, ma, ma). 
We shall now carry out the limiting procedure explicitly. Recall that 

f = p~1'4F1/4+(l-p)A3/4F3/4, 

where the two linearly independent solutions F1/4 and F3/4 to equation (3) were defined 
by their asymptotic forms [(/(2X2)J1/" and [t/(2X2)I3'" respectively for large value of 
their arguments. With the identifications made above, we see that 

f = p1"4F,/4[t/(2E.X2)1 + (1 - p)~3/4F3/4[t/t21X2)1 (a) 

as a function on M , ,  for each 1. If we restrict the allowed range of the coordinates to 
be such that 5/(2X2) remains bounded away from zero, and f has no zeros, then mall 
values of1 imply large values of the argument 5/(2X2) off. It follows that we caninsert 
the asymptotic forms for FlI4 and F3/4 into f when taking the limit 1 + 0. The result is 

It is convenient to note that 

1 
AR = ----11/5p/4b+o(4) 

4 2  
where the O(1) term does not contribute to the metric to order A, even when P = o .  
Having these expressions in hand, it is easy to see that the transformed tetrad is given bY 

I,dx" = [J2pX+(1-p)t1/2](1/4 d(+O(E.) 

n,dx* = dr+0(1) 

1 
m, dx a = r d l  --pL5114 d5 + O(1). 

4 2  
The sole component of the curvature tensor in this tetrad is 

Y4 = Cabcdnajjibncjjid (8) 

J S O M  

= -3i;l{~t;~/~[J2pX+(l -p)t1/2]}-1 +O(A2). 

Equation (8) demonstrates explicitly that the space-times given by equatioas (I) are 
indeed flat when A = 0. The flat metric resulting from equations (7) with 
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Eomponents in the coordinate system (5, r, X, Y) given by 

= t i l 4  d@,/2prdX + 2[42pX + (1 - p)5'/'] dr - p25'14 dt} 

- 2r2(dX2 + d Y 2). (9) 

of &e linearized Hauser metria 

we see from equations (7) that the linearized one-form I ,  dx" is proportional to a 

fimL I" is tangent to shear-free null hypersurfaces in flat space-time, the 
having unfortunately gone to zero in the limit I + 0. The primary problem in 

out what this congruence is, as in investigating the singularity structure of the 
& curvature tensor, is to identlfy the functions 5, r, X and Y in Minkowski's 
+e. As a first step towards a solution of this problem, we note that n" is a 

mlationai Killing vector in flat space. This can be seen by inverting equations 
fl to obtain 

I "  alaxa = a/ar 

nna/axn = [ 4 2 ~ x + ( ~ . - p ) 5 ~ ' ~ ] - ~ { 5 - ~ ~ ~  a/at+b/(&r)] aiax} 

maalax" = -[i/(2r)l(a/ax+i a/aY) 
(io) 

arid then verifying by direct calculation that 9, gab = 0. Since n, dx" = dr, and na is a 
nul Killing vector, we can introduce orthonormal coordinates (t, x, y, z) in Minkowski 
ipace to set 

J2r = t - z. (11) 
We next consider the Killing vector field Kaa/ax" = a/aY in coordinates 

1' = (5, r, X, Y). From equations (9) and (1 l), the squared norm of Ka is 

g,,K"Kb = -2r2 = -(t-z)2. 

the components of any Killing vector field in Minkowski's space-time can be 
*Ply expressed in terms of an orthonormal coordinate system, it is not difficult to 
v*lfy that the most general Killing vector field with squared norm - (t - z)' is 

U(X alat + t alax + x ajaz - a/ax) + b ~ ,  a/at + t a/ay + y a/az - z a/ay) 

'ma2+b2 = 1. Since it is then always possible to rotate the xy axes to achieve 
4 = 4 b  = I, we set 

K " alax a = a/a Y = y a/at + t a/ay + y a/az - z a/ay (12) 

value of P. This choice enables us to identify the function Y since 

Kadx" = -2r2 dY = -(t-Z)2 dY 

boon equations (9) and (1 l), while from equation (12) 

K a d~ " = y d(t - Z) - (t - z) dy 
sotbat 
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We set 

(13) 
Y = y/(t - z). 

AS our third step, we seek an expression for a space-like, unit vector field a/& io 
the coordinates (t, r, X ,  Y) ,  such that alax is orthogonal to and commutes 
vector fields 

afat + afaz = J2n a/ax a. (1s) 
Expanding ajax in the basis {a, nay ma, 3) and making use of the expressions (7) and 
(10) for the tetrad results, after some straightforward computation, in 

afax = J 2 ~ n  a ajax a - i/( J2r) alax. (IQ 
Converting the left and right hand sides of equation (16) into one-forms with the metric 
then allows us to conclude that 

x = J2rX -p3?I4. (17) 

Finally, we write the Minkowski metric in the form d(t + z) d(t - z )  - dx2 -d$ and 
compare this with equation (9) using equations ( l l ) ,  (13), and (17). The conclusion i 
that 

(18) 

What we have found is that for each value of p, a transformation from Hauser's CO. 
ordinates (5, r, X ,  Y) for the corresponding linearized solution to an orthonormal CLP 
ordinate system (t, x,  y, z) in Minkowski's space-time is effected by 

tSz = JW - p ~ r 7 ' 4 + ~ 2 r ( ~ 2 +  ~ 2 ) .  

(19) 

We wish now to investigate the linearized principal congruence, that is, the null  st^@ 
lines in Minkowski's space-time to which the vector field I" is tangent. We note fint 
Of all that gabPKb = 0 so that the Killing vector field X" is tangent to the null 
surfaces generated by la, Ka being orthogonal to the normal I" to these hypersurfae 
NOW the only shear-free null hypersurfaces in fiat space-time are null con6 or 
hyperplanes, and since the divergence of 1" does not vanish, the hypersurfam We sek 
must be null cones. Since the principal congruence must be mapped to itself under 
group action induced by Kay the vertices of these null cones must be fixed Points sine 
otherwise the vertices would be slid along the cones by this action, which is absurd 
Hence the vertices lie in the plane S: y = 0, t -  z = 0. Counting degrees of freedom &Om 
that for any given p these vertices lie on some curve w@) in S. Let US call be ? 
~ 0 1 )  from which the null cones of the linearized conguence spring, the generaMg 
curve for the linearized congruence. 

In order to h d  the generating curve for each p, we introduce coordinates us '-I-' 
11 := I-z, x and y. With respect to these coordinates, I" has components 

t - z=  j 2 r  t + z  J 2 ( 1 - , ~ ) + { ~ ' ~ +  j 2 r ( X 2 + Y 2 )  

x = J 2 r ~  -p$c5/4 y = J ~ Y .  

+ y2 ,  1 ,  x, r). 
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use the integral curves of P are straight lines, and flat space has a linear struc- 
mre io fie coordinates (U, U, x ,  y), I" must be proportional to the vector having com- Y W  

P*'s 
( z I - u o , U - o , x - x o , Y - o )  

WOL) = (vo, 0, xo,  0) 

v-U0 = J2r(x2+ Y2) 

a factor l/r. Thus the integral curves of I" spring from the curve 

in the plane S. Equating the above expressions for I a yields 

x-xo = J2rX 

admaking use of equation (19) then gives the parametric form 

&):R + M :( + (421 -P)$("~, 0, -,u$('/~, 0) (20) 

for the generating curve in the coordinates (U, U, x, y). The curve w Q  is sketched in the 
%to plane for some values of p in figure 1. Note that the linearized congruence is not 
defmed for points spacelike-related to the generating curve wh). 

Rgmt 1. Curves in the xouo plane from which the linearized principal null congruence 
springs for some values of p. 

Finany we come to the linearized Weyl tensor or gravitational field. This is given 
bY 

m the tetrad {I", na, ma, Ea) has the single non-vanishing component 

Yt = L&cdnaEbncjjjd = -3i(r(3/4[J2pX+(1 -p)(1'2JI-'. 

. '4 Order to locate the singularities of this field, we introduce a constant null tetrad ' UOWWS space-time and examine where the components of Labcd in this tetrad 
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fag to be defined. In our orthonormal coordinate basis the constant tetrad win be 

obtained by a nu8 rotation of this constant tetrad by an amount c = X+iyabnth  
direction J2 alau. This may be verified using equations (10) and (19). It then fo~ons 
that the five complex components of Labd in the constant basis are Yip, a = o , ~ , J ,  3,4. 
TO locate the regions of flat space where the components are not defined, Ib 

express Y i  as 

( ~ 2  alau, J z a l a ~ ,  J2(a/ax + i aiay), J2(a/ax- i alay)l. m e  linearized Hauser tetrad is 

Y: = - 3i[rt2(IawJ]- '. 
Here w" is the tangent to the generating curve (20) parametrized by t. The product 
I%, vanishes on the boundary of the causal future and past of the generating ,,,. 
This includes the hyperplane r = 0. The hypersurface 5 = 0 is half of the null wlK of 
t h e o r i g i n v = u = x = y = O f o r p # O .  (Ifp=O,thehypersurface{=Oisthem& 
null cone of the origin.) The function 5 is singular on the hyperplane t- z = 0 (ie r = 0) 
but is regular at all other finite points. We conclude, therefore, that the line- f&j 
is singular on the boundary of the future and past of the generating curve and on that 
portion of the origin's null cone which is generated by the principal null congruence 

We note that the linearized Hauser fields do not peel off along outgoing nulldicectiou 
in the manner appropriate for linearized asymptotically flat fields. For example, going 
out along the direction 4 2  alau, the function 5 grows without bound so that COB 
ponents of the curvature in the constant basis also grow without bound in that null 
direction. 

5. Conclusion 

We have been able to make a fairly complete analysis of the linearized Hauser space- 
times. On the basis of this analysis, we wish to draw some conclusions concerning tbe 
nature of the non-flat, exact Hauser solutions. It is, of course, not true that all features 
of the linearized approximations will carry over to the exact solutions. Nevertheless, 
one might expect that certain qualitative properties of a linearized field will c o n h e  
to hold in some open neighbourhood of flat space along the curve of exact solutions 10 
which the linearized solution is tangent. The properties we propose to establish fortbe 
exact Hauser solutions, in some neighbourhood of flat space-time, are the unhU" 
of the Killing vector field K", and the failure of asymptotic flatness. 

Suppose there are two Killing vectors in the exact Hauser space-time& the one 
found by Hause; that we have called K" and a second one called .la. Since J" 
preserve the principal congruence, let us scale la so that the commutator [J, rJ' = o. 
Now consider a one parameter family of these Hauser space-times with flat SPY as 
a limit. From Geroch's (1969) work on limits of space-times, we know that f a 
Minkowski Killfng vector field in the limit and is distinct from the limit 

y aiat + t a/ay + a/az - alay 
of K". Since [J, fla = 0 for all the space-times, it must be true by continui0' also the limit. SO we must look for another Minkowski Killing vector field Preserving WM linearized congruence. Such a vector field must leave invariant the curve from 
sprang the null cones of the linearized congruence. Except for p = 0 Or 1, th6 cm tbat is only preserved if its points are fixed points of the group action, and it is 0 s t-?. the Killing vector field must then have fixed points everwhere on the plane Y - 
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wlttbe 
such Killing vector field is the one we already know about. We conclude 

we now show that asymptotic flatness of the Hauser space-times is inconsistent 
aitb the combination of their algebraic type and the action of their isometry group. 
Tpe argument is an adaptation of an idea of Penrose's (private communication). We 
de a one parameter family of Hauser space-times with a Minkowski limit. Sup 
posing &e Hauser space-times to be asymptotically flat, we would obtain a family of 

infinitis 4 (see eg Penrose 1974) with Minkowski's 9 in the limit. Since the unique 
mg vector field K" does not induce closed orbits on Minkowski's 9, it must induce 

orbits on the f of the Hauser space-times in some open neighbourhood of flat open 
spacR That identifications which would close the orbits of K" on 9 in Minkowski's 
* d e  m o t  be made without violating either causality or regularity of the 
manifold is obvious from the fact that K" is the sum of a boost and a rotation; such 
dm(ifj&ons will also not be possible in some neighbourhood of flat space. It follows 
that the induced action of K" on 9 will map some section o f 9  onto a future section. 
s$loe g* is an isometry of space-time, the mass integral (see eg Penrose 1974) must 
 the same value on both sections. Now the change in mass due to gravitational 
&tion can be expressed as an integral of the squared modulus of the news function 
overthe volume o f 9  bounded by the two sections. But since the change in mass is 
Ecrqthe news function must vanish everywhere between the two sections. In particular, 
theradiation field on 4, which is a derivative of the news function, must vanish between 
thesections. In order to establish a contradiction with the assumption of asymptotic 
Batness, it remains to show that the radiation field for a non-flat type (4) space-time 
does not vanish between two sections of 9 which are mapped into one another under 
IT, 

Consider some integral curve of the repeated principal null vector I". This is a null 
SeOdeSis and hence meets 9 in some point p .  Except, perhaps, for isolated exceptional 
pomb it will then always be possible to choose a pair of non-intersecting sections of 9 
which sandwich the point p ,  and which are mapped into each other under the action of 
hegroup. Since a finit; null rotation about I" will align na with the null direction in 
f a t  P, and since any conformal factor IZ defining 9 has the behaviour l/r near 4, r 
h an a&e parameter along the chosen null geodesic, it follows that the radiation 
field will not vanish at p .  By continuity, the radiation field will not then vanish in some 

& l S ' ~ *  

neighbourhood of p ,  which establishes the required contradiction. 
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Apllleodix 

Among the one parameter family of linearized Hauser solutions, the one for which 
a = 0  deserves special attention. From equation (20) it is seen that the generating 

the congruences all have space-like tangents except in this case; the linearized 
cGnsruence here consists of the null lines of Minkowski space-time which meet the 
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null line x = y = U = 0. We confer special attention on this case because linearized 
null fields with this congruence, as we shall demonstrate, also arise as limits ofglo4 
regular linearized null fields which peel off at 9 in the way appropriate for ~y-qot icduy 
flat gravitational fields. 

We first review a technique (Synge 1956, Penrose 1965) for constructing a do& 
non-singular null solution of the linearized gravitational field equatios 
off appropriately in all directions in flat space-time. The solution is  cons^^^ hm 
a constant spinor field lA together with a globally regular complex function sa* 
the two equations 

V"V,X = 0 
and (U 

V a v d - '  = qab  

where the V, is the flat affine connection and )lab the Minkowski metric. The 
gravitational field is 

- -A'-B'-C-D'v v v v 
y',CD - &  AA' BB' CC' DDX'  

Exploiting the constancy of iA', the commutativity of derivatives, and the wave equation 
satisfied by X, the satisfaction of the field equation is apparent : 

VDE'Y',CD = 0. 

In a similar way one verifies that 

Y-iEV;,X- = O 

from which it follows that 

:= iA'V,,X- (k2) 

is the fourfold principal spinor of YacD. 
The functions x-' satisfying equations (A.l) are the constant multiples of 

x -  = +(x" + i8")(x, + io,). (U 
Here x" is the Minkowski position vector and 8" is a constant vector field Which is 
time-like in order that x be everywhere regular. 

Taking advantage of the explicit expression for X -  l, we can now characterize * 
principal null direction @e. From equations (A.2) and (A.3) it is immediate that 

VA*AKB = -IA'EAB 

where 
therefore a solution of the twistor equation (Penrose 1967) 

is the antisymmetric spinor satisfying 'lab = eABeAfB,. T h e  spinor field 

V$KB' = 0 

and the pair (e,iA') represent a twistor 2". The congruence of null straight lines to 
which @iP' is tangent is called a Robinson congruence (Penrose 1967). The null fields 
described here are examples of 'elementary states' (penrose 1968) in twWr 

with 8" no longer time-like but coincident with na = instead. By equation (a)' 
principal spinor is then given by 

A null linearized gravitational field may also be constructed in the above 

KA - -A' - 1  XAA' 
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it follows that the principal null vector field k" has the form 

k" = (flbXb)X"-%XbXb)&. 

addition equation shows that the principal null vectors (flbxb)- 'k" join the 
-e points x" to points on the null line through the origin in the direction of 

f ie  congruence is therefore the same as the linearized Hauser congruence for 
p = o .  

the principal congruences agree, one may wonder if the linearized Hauser 
field agrees with the degenerate elementary state field described here. Given a field 
ye = $ K ~ K ~ K C K D  satisfying VAA''I',BCD = 0, it is evident that CtyABC,, is also a 
~ l ~ o n  whenever a satisfies 

iPVAA.a = 0. 

$'ben p PP is hypersurface orthogonal, a may, in particular, be any function which 
isconstant on the null hypersurfaces. The linearized Hauser field, in fact, differs from 
hedegenerate elementary state field by just such a factor. 
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